A hot-blast stove is a facility to supply hot air to a blast furnace continuously. In the combustion (heat accumulation) phase, heat energy in hot exhaust gas from a burner is accumulated in checker bricks and, in the ventilation phase, a large quantity of air is blown through the checker bricks to raise the temperature of the air. The hot-blast stove of Nippon Steel Engineering (NSE) has the following characteristics.

- **Achievement of high efficiency combustion**
 - Achievement of high efficiency combustion even in the operation only with blast furnace gas (BFG) (Mono-fuel BFG combustion)

- **Achievement of ventilation of hot air**

- **Heat radiation from the stove body smaller than conventional stoves**
 - It has a smaller radiation surface area than conventional ones because of its smaller size.

- **Applicable to blast furnaces with volumes over 5,000 m³**
 - NSE’s design technology makes it possible to use the hot blast stove with large blast furnaces with volumes over 5,000 m³.

- **Low construction costs**
 - Because there are no complex burner bricks or partition walls and only a small volume of bricks, the hot blast stove is inexpensive.

- **Short manufacturing cycle**
 - The furnace manufacturing cycle is short since the lack of complex burner bricks means the furnace construction difficulty is low.

- **Space saving**
 - No need for a combustion chamber: The improved heat accumulation allows its installation in an area smaller than the area required for installation of the conventional hot-blast stoves.

- **Stove service life of 40 years**
 - The hot blast stove makes use of NSE’s refractory technology with a track record of long service lives.

- **Complete elimination of stress corrosion cracking**
 - Stress corrosion cracking (SCC) is completely eliminated with Nippon Steel & Sumitomo Metal Corporation’s SCC-resistant steel and NSE’s fabrication technology.

Basic Concept or Summary

![Figure 1: NSE furnace top combustion-type hot-blast stove](image1)

![Figure 2: Concentration distribution of uncombusted CO in the stove](image2)

- **Reduction in uncombusted CO concentration in the stove with the use of a new burner**

Source: JASE-W Japanese Smart Energy Products & Technologies
https://www.jase-w.eccj.or.jp/technologies/index.html
Figure 3: Comparison of the performance of burners in the mono-fuel BFG combustion
(diagram of the concentration distribution of uncombusted CO)

⇒ The concentration of uncombusted CO above the upper surface of checker bricks is reduced to 1/10 of the concentration in the conventional internal combustion stove during the mono-fuel BFG combustion.

Effects or Remarks

- High combustion performance which reduces the concentration of uncombusted CO in the stove
- Potential for the reduction of energy consumption in a hot-blast stove for a 5,000 m³ blast furnace by 1 - 2 %
- The concentration of uncombusted CO in the space above the checker bricks can be reduced to approx. 1/10 of the concentration in the conventional internal combustion hot-blast stoves.
- Consumption of energy required for the mono-fuel BFG combustion can be reduced by 2 - 3 %.
- High heat-transfer efficiency
- The hot-blast stove provides high heat-transfer efficiency because cases flow at a constant velocity along the entire checker brick profile.
- Reduction in the ratio of reducing materials in a blast furnace with hot air ventilation
- Reduction of 10 kg/ton-pig in the coke ratio by raising the ventilation air temperature in a 5,000 m³ blast furnace by 100 °C
- The energy loss through heat radiation from the stove body has been reduced by approx. 30 % compared with the conventional hot-blast stoves.

Installation in Practice or Schedule

<table>
<thead>
<tr>
<th>Domestic</th>
<th>Nippon Steel Corporation</th>
<th>Yawata Works</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overseas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact:
NIPPON STEEL ENGINEERING CO., LTD.,
Plant & Machinery Sector
Osaki Center Building, 1-5-1 Osaki, Shinagawa-Ku, Tokyo 141-8604 Japan
Phone: +81-3-6665-2000 Fax: +81-3-6665-4847