						S3/4	ZEB/BEMS/FEMS
O-15	Keywords	Y2	device	Z3	natural gas	E25	general-purpose machinery

KAWASAKI HEAVY INDUSTRIES, LTD.

Triple Effect Absorption Chiller-heater

Features Heat Source Equipment for Air Conditioning • Freon Free:

Absorption chiller-heaters contain "water" as refrigerant and Freon gas which has high global warming potential is not used.

- Low Electricity Consumption: Absorption chiller-heaters provide chilled water by means of natural gas combustion, which contributes to significant reduction of electricity consumption.
- The world's First Triple Effect Absorption Chiller-heater: In 1968, we commercialized the world's first double effect direct fired absorption chiller-heaters. In 2005, we commercialized the world's first triple effect direct fired absorption chiller-heaters.

Natural gas consumption is further reduced by upgrading from double effect type to triple effect type.

- The highest COP in the world
 - 1.6 (Higher Heating Value basis)
 - 1.7 (Lower Heating Value basis)
- Application for gas engine co-generation system is also available.

Basic Concept or Summary

Construction of the triple effect absorption chiller-heater (Image)

- The triple effect absorption chiller-heaters have three generators and lithium bromide solution is generated in three steps.
- The triple effect absorption chiller-heaters have been developed by combination of a double effect steam fired absorption chiller as a base machine and a once-through boiler as a new high temperature generator.

with conventional types.

Grand Reduction in CO₂ Emission

651 kW (185 RT), annual CO₂ emission can be

reduced by approximately 140 tons compared

For example, in the case of cooling capacity

Maximum Efficiency COP1.7

Being equipped with the new solution circulation inverter control (the patent is being applied for) as a standard function, the maximum efficiency **COP1.7** is achieved in the partial load area where the system is most frequently used.

- The energy consumption is lower by 38% compared with double effect type (COP = 1.0) which is commonly operated now.
- The COP in the partial load area can be improved by the optimum inverter control for solution pumps.
- Total motor output is only "6.5 kW in the case of 185 RT".
- Awards received

February 2006:	The Japan Institute of Energy Progress Prize (Technology Division)					
June 2006:	The 8 th Electric Load Leveling Equipment, System Award					
	The Heat Pump & Thermal Storage Technology Center					
	of Japan, Chairman Prize					
January 2007:	The 17 th Energy Conservation Grand Prize					
·	The Energy Conservation Center, Japan, Chairman					
	Prize					
June 2008:	The Japan Gas Association					
	Technology Prize of FY2008					

Installation in Practice or Schedule

Domestic Delivered mainly to factories, hospitals, general buildings, etc.

Overseas Based on the deliveries in Japan, overseas sales activity is under way.

Contact: Kawasaki Thermal Engineering, Overseas Project Department Tel: +81-3-3645-8251 Fax: +81-3-3645-8233 URL: <u>https://www.khi.co.jp/corp/kte/</u>